Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(12): 2719-2735.e7, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039966

RESUMO

Commensal microbes induce cytokine-producing effector tissue-resident CD4+ T cells, but the function of these T cells in mucosal homeostasis is not well understood. Here, we report that commensal-specific intestinal Th17 cells possess an anti-inflammatory phenotype marked by expression of interleukin (IL)-10 and co-inhibitory receptors. The anti-inflammatory phenotype of gut-resident commensal-specific Th17 cells was driven by the transcription factor c-MAF. IL-10-producing commensal-specific Th17 cells were heterogeneous and derived from a TCF1+ gut-resident progenitor Th17 cell population. Th17 cells acquired IL-10 expression and anti-inflammatory phenotype in the small-intestinal lamina propria. IL-10 production by CD4+ T cells and IL-10 signaling in intestinal macrophages drove IL-10 expression by commensal-specific Th17 cells. Intestinal commensal-specific Th17 cells possessed immunoregulatory functions and curbed effector T cell activity in vitro and in vivo in an IL-10-dependent and c-MAF-dependent manner. Our results suggest that tissue-resident commensal-specific Th17 cells perform regulatory functions in mucosal homeostasis.


Assuntos
Microbioma Gastrointestinal , Células Th17 , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Anti-Inflamatórios
2.
Cell ; 185(19): 3501-3519.e20, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041436

RESUMO

How intestinal microbes regulate metabolic syndrome is incompletely understood. We show that intestinal microbiota protects against development of obesity, metabolic syndrome, and pre-diabetic phenotypes by inducing commensal-specific Th17 cells. High-fat, high-sugar diet promoted metabolic disease by depleting Th17-inducing microbes, and recovery of commensal Th17 cells restored protection. Microbiota-induced Th17 cells afforded protection by regulating lipid absorption across intestinal epithelium in an IL-17-dependent manner. Diet-induced loss of protective Th17 cells was mediated by the presence of sugar. Eliminating sugar from high-fat diets protected mice from obesity and metabolic syndrome in a manner dependent on commensal-specific Th17 cells. Sugar and ILC3 promoted outgrowth of Faecalibaculum rodentium that displaced Th17-inducing microbiota. These results define dietary and microbiota factors posing risk for metabolic syndrome. They also define a microbiota-dependent mechanism for immuno-pathogenicity of dietary sugar and highlight an elaborate interaction between diet, microbiota, and intestinal immunity in regulation of metabolic disorders.


Assuntos
Síndrome Metabólica , Microbiota , Animais , Dieta Hiperlipídica , Açúcares da Dieta , Interleucina-17 , Mucosa Intestinal , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Células Th17
3.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35113732

RESUMO

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Assuntos
Microbiota , Linfócitos T , Animais , Humanos
5.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686657

RESUMO

The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.


Assuntos
Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Processamento Alternativo , Animais , Sobrevivência Celular , Endocitose/fisiologia , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Camundongos Transgênicos , Proteína cdc42 de Ligação ao GTP/genética
6.
Science ; 363(6431)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846568

RESUMO

Commensal bacteria influence host physiology, without invading host tissues. We show that proteins from segmented filamentous bacteria (SFB) are transferred into intestinal epithelial cells (IECs) through adhesion-directed endocytosis that is distinct from the clathrin-dependent endocytosis of invasive pathogens. This process transfers microbial cell wall-associated proteins, including an antigen that stimulates mucosal T helper 17 (TH17) cell differentiation, into the cytosol of IECs in a cell division control protein 42 homolog (CDC42)-dependent manner. Removal of CDC42 activity in vivo led to disruption of endocytosis induced by SFB and decreased epithelial antigen acquisition, with consequent loss of mucosal TH17 cells. Our findings demonstrate direct communication between a resident gut microbe and the host and show that under physiological conditions, IECs acquire antigens from commensal bacteria for generation of T cell responses to the resident microbiota.


Assuntos
Antígenos de Bactérias/imunologia , Endocitose/imunologia , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Células Th17/imunologia , Animais , Bactérias/imunologia , Endocitose/genética , Homeostase/genética , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Simbiose , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/fisiologia
7.
Trends Immunol ; 38(8): 537-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28684208

RESUMO

Studying the interactions between commensal microbes and host intestinal tissue networks is challenging due to the complexity and inaccessibility of the system. A recent study reports a novel organ culture system that will enhance our ability to dissect these interactions.


Assuntos
Intestinos , Mucosa , Bioengenharia , Sistema Nervoso , Técnicas de Cultura de Órgãos
8.
Cell Host Microbe ; 21(3): 282-285, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279331

RESUMO

Ten years ago, we discovered that microbiota composition controls intestinal T cell homeostasis and alters T cell responses of mice in different animal facilities. Here I discuss how these discoveries, reported in Cell Host & Microbe in 2008, came to be and contributed to our understanding of microbiota immune effects.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Linfócitos T/imunologia , Animais , Homeostase , Camundongos
9.
Cell ; 166(1): 88-101, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27293190

RESUMO

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Assuntos
Autoanticorpos/imunologia , Micropartículas Derivadas de Células/química , Cromatina/imunologia , DNA/imunologia , Endodesoxirribonucleases/genética , Lúpus Eritematoso Sistêmico/imunologia , Animais , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/metabolismo , Humanos , Células Jurkat , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Cell Rep ; 13(6): 1110-1117, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527007

RESUMO

Regulatory B cells (Breg) have immune suppressive functions in various autoimmune/inflammation models and diseases and are found to be enriched in diverse B cell subsets. The lack of a unique marker or set of markers efficiently identifying Breg cells impedes detailed investigation into their origin, development, and immunological roles. Here, we perform transcriptome analysis of IL-10-expressing B cells to identify key regulators for Breg biogenesis and function and identify CD9, a tetraspanin-family transmembrane protein, as a key surface marker for most mouse IL-10(+) B cells and their progenitors. CD9 plays a role in the suppressive function of IL-10(+) B cells in ex vivo T cell proliferation assays through a mechanism that is dependent upon B/T cell interactions. CD9(+) B cells also demonstrate inhibition of Th1-mediated contact hypersensitivity in an in vivo model system. Taken together, our findings implicate CD9 in the immunosuppressive activity of regulatory B cells.


Assuntos
Linfócitos B Reguladores/metabolismo , Interleucina-10/metabolismo , Tetraspanina 29/metabolismo , Transcriptoma , Animais , Linfócitos B Reguladores/citologia , Células Cultivadas , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 29/genética
11.
Cell ; 163(2): 367-80, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26411289

RESUMO

Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics.


Assuntos
Aderência Bacteriana , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli O157/fisiologia , Mucosa Intestinal/imunologia , Células Th17/imunologia , Animais , Infecções Bacterianas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Fezes/microbiologia , Humanos , Imunoglobulina A/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Microscopia Eletrônica de Varredura , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie
12.
Cell Rep ; 12(8): 1314-24, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26279572

RESUMO

Generation of different CD4 T cell responses to commensal and pathogenic bacteria is crucial for maintaining a healthy gut environment, but the associated cellular mechanisms are poorly understood. Dendritic cells (DCs) and macrophages (Mfs) integrate microbial signals and direct adaptive immunity. Although the role of DCs in initiating T cell responses is well appreciated, how Mfs contribute to the generation of CD4 T cell responses to intestinal microbes is unclear. Th17 cells are critical for mucosal immune protection and at steady state are induced by commensal bacteria, such as segmented filamentous bacteria (SFB). Here, we examined the roles of mucosal DCs and Mfs in Th17 induction by SFB in vivo. We show that Mfs, and not conventional CD103(+) DCs, are essential for the generation of SFB-specific Th17 responses. Thus, Mfs drive mucosal T cell responses to certain commensal bacteria.


Assuntos
Mucosa Intestinal/imunologia , Macrófagos/imunologia , Microbiota/imunologia , Células Th17/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C , Células Cultivadas , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
13.
Immunity ; 43(1): 12-4, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200009

RESUMO

How commensal-specific T cells are controlled in the periphery is poorly understood. In a recent issue of Science, Hepworth et al. (2015) show that ILC3s induce apoptosis of microbiota-specific CD4 T cells in a form of extrathymic negative selection.


Assuntos
Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/microbiologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Doenças Inflamatórias Intestinais/microbiologia , Animais , Feminino , Humanos , Masculino
14.
J Immunol Methods ; 421: 104-111, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25858227

RESUMO

Segmented filamentous bacteria (SFB) are Gram-positive, anaerobic, spore-forming commensals that reside in the gut of many animal species. Described more than forty years ago, SFB have recently gained interest due to their unique ability to modulate the host immune system through induction of IgA and Th17 cells. Here, we describe a collection of methods to detect and quantify SFB and SFB adhesion in intestinal mucosa, as well as SFB-specific CD4 T cells in the lamina propria. In addition, we describe methods for purification of SFB from fecal material of SFB-monoassociated gnotobiotic mice. Using these methods we examine the kinetics of SFB colonization and Th17 cell induction. We also show that SFB colonize unevenly the intestinal mucosa and that SFB adherence occurs predominantly in the terminal ileum and correlates with an increased proportion of SFB-specific Th17 cells.


Assuntos
Infecções por Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Células Th17/imunologia , Animais , Aderência Bacteriana/imunologia , Fezes/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Simbiose
15.
PLoS One ; 10(2): e0118171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706374

RESUMO

Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.


Assuntos
Autoanticorpos/imunologia , Sequência Conservada/genética , DNA/genética , DNA/imunologia , Genes de Imunoglobulinas/genética , Imunoglobulina G/genética , Animais , Diversidade de Anticorpos/genética , Diversidade de Anticorpos/imunologia , Linfócitos B/imunologia , Evolução Biológica , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Sequência Conservada/imunologia , Genes de Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fases de Leitura/genética , Fases de Leitura/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia
16.
Science ; 345(6202): 1254009, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25214634

RESUMO

Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.


Assuntos
Fucose/metabolismo , Imunidade Inata , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium , Animais , Sequência de Bases , Modelos Animais de Doenças , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Vida Livre de Germes , Glicosilação , Células Caliciformes/enzimologia , Células Caliciformes/imunologia , Células Caliciformes/microbiologia , Íleo/enzimologia , Íleo/imunologia , Íleo/microbiologia , Interleucinas/imunologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Celulas de Paneth/enzimologia , Celulas de Paneth/imunologia , Celulas de Paneth/microbiologia , Infecções por Salmonella/microbiologia
17.
Immunity ; 40(4): 594-607, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24684957

RESUMO

How commensal microbiota contributes to immune cell homeostasis at barrier surfaces is poorly understood. Lamina propria (LP) T helper 17 (Th17) cells participate in mucosal protection and are induced by commensal segmented filamentous bacteria (SFB). Here we show that MHCII-dependent antigen presentation of SFB antigens by intestinal dendritic cells (DCs) is crucial for Th17 cell induction. Expression of MHCII on CD11c(+) cells was necessary and sufficient for SFB-induced Th17 cell differentiation. Most SFB-induced Th17 cells recognized SFB in an MHCII-dependent manner. SFB primed and induced Th17 cells locally in the LP and Th17 cell induction occurred normally in mice lacking secondary lymphoid organs. The importance of other innate cells was unveiled by the finding that MHCII deficiency in group 3 innate lymphoid cells (ILCs) resulted in an increase in SFB-independent Th17 cell differentiation. Our results outline the complex role of DCs and ILCs in the regulation of intestinal Th17 cell homeostasis.


Assuntos
Antígenos de Bactérias/imunologia , Infecções por Clostridium/imunologia , Clostridium/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Intestinos/imunologia , Linfócitos/imunologia , Células Th17/imunologia , Animais , Apresentação de Antígeno , Diferenciação Celular , Células Cultivadas , Células Dendríticas/microbiologia , Antígenos de Histocompatibilidade Classe II/genética , Intestinos/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microbiota/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
18.
Nat Commun ; 4: 1772, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612313

RESUMO

Intestinal plasma cells predominantly produce immunoglobulin (Ig) A, however, their functional diversity remains poorly characterized. Here we show that murine intestinal IgA plasma cells can be newly classified into two populations on the basis of CD11b expression, which cannot be discriminated by currently known criteria such as general plasma cell markers, B cell origin and T cell dependence. CD11b(+) IgA(+) plasma cells require the lymphoid structure of Peyer's patches, produce more IgA than CD11b(-) IgA(+) plasma cells, proliferate vigorously, and require microbial stimulation and IL-10 for their development and maintenance. These features allow CD11b(+) IgA(+) plasma cells to mediate early-phase antigen-specific intestinal IgA responses induced by oral immunization with protein antigen. These findings reveal the functional diversity of IgA(+) plasma cells in the murine intestine.


Assuntos
Bactérias/metabolismo , Antígeno CD11b/metabolismo , Imunoglobulina A/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Plasmócitos/imunologia , Administração Oral , Animais , Proliferação de Células , Imunização , Interleucina-10/metabolismo , Intestinos/citologia , Camundongos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Plasmócitos/citologia
19.
Immunol Cell Biol ; 91(3): 204-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318659

RESUMO

Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal-host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium.


Assuntos
Bactérias/imunologia , Fenômenos Fisiológicos Bacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mucosa Intestinal , Intestinos , Animais , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia
20.
Cell Host Microbe ; 12(4): 496-508, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23084918

RESUMO

Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis.


Assuntos
Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Metagenoma/imunologia , Animais , Humanos , Sistema Imunitário/microbiologia , Sistema Imunitário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...